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a b s t r a c t

Computations of liquid–solid slurries in horizontal pipes are performed to investigate the complex mul-
tiphase flow dynamics associated with operating conditions above and below the critical deposition
velocity. A high-fidelity large eddy simulation framework is combined with a Lagrangian particle tracking
solver to account for polydispersed settling particles in a fully developed turbulent flow. The two phases
are fully coupled via volume fraction and momentum exchange terms, and a two-step filtering process is
employed to alleviate any dependence of the liquid-phase mesh size on the particle diameter, enabling
the capture of a wide range of spatial turbulent scales. A fully conservative immersed boundary method
is employed to account for the pipe geometry on a uniform Cartesian mesh. Two cases are simulated, each
with a pipe geometry and particle size distribution matching an experimental study from Roco & Bala-
krishnam, which considers a mean volumetric solid concentration of 8.4%, corresponding to just over
16 million particles. The first case considers a Reynolds number based on the bulk flow of the liquid of
85,000, resulting in a heterogeneous suspension of particles throughout the pipe cross-section. Statistics
on the concentration and velocity of the particle phase for this case show excellent agreement with
experimental results. The second case considers a lower Reynolds number of 42,660, leading to the for-
mation of a stationary bed of particles. Three distinct regions are identified in the second case, corre-
sponding to a rigid bed at the bottom of the pipe, a highly-collisional shear flow just above the bed,
and a dilute suspension of particles far from the bed. Computational results indicate segregation in par-
ticle size along the vertical direction, with the smallest particles located at the top, increasing monoton-
ically until the bed surface, where the largest particles are located. The covariance of concentration and
velocity of each phase is presented, giving further insight on the multiphase dynamics. Statistics on the
individual mechanisms that contribute to the motion of each particle, namely forces due to drag, the
pressure gradient and viscous stresses of the surrounding fluid, and collisions, are provided for each case.
It is observed that for the majority of the pipe cross-section, the drag force dominates for each case, which
is balanced by inter-particle collisions in the streamwise direction, and by gravity in the vertical direc-
tion. Simulation results are also used to investigate closures from Reynolds average modeling of multi-
phase flows.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Liquid–solid two phase flows, referred to as slurries, are com-
mon in many engineering and natural processes, and are often tur-
bulent. Due to the relatively low operation and maintenance costs,
slurry pipelines are typically used in chemical and mining indus-
tries for long distance transport of bulk materials such as oil sand
ore, coal, copper, iron and phosphate concentrates, among others,
to processing plants. The slurry consists of settling particles in a
turbulent carrier fluid, where the solid material is usually
polydisperse with a size distribution that can span several orders

of magnitude. At very high flow rates the solid particles are nearly
uniformly distributed across the pipe cross-section due to the high
level of turbulence. Reduction in the flow rate leads to a higher
concentration of particles at the bottom of the pipe. As the velocity
continues to decrease, the solid material may form a dense sliding
bed and eventually a stationary bed. The bulk slurry velocity asso-
ciated with the onset of a stationary bed is referred to as the critical
deposition velocity. The formation of a bed layer can be very haz-
ardous, leading to wear and possible blockage of the pipeline. The
frictional pressure loss is a key parameter in the design of slurry
pipelines, as it provides information on the power required to
maintain a flow rate above the critical deposition velocity. The
solid velocity profile, slip velocity between the phases, solid
concentration profile, and particle size distribution all impact the
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pressure drop in the pipe. However, the wide range of length and
time scales associated with dispersed multiphase flows makes esti-
mations of these parameters extremely difficult.

Great effort has been made towards the development of predic-
tive and reliable models for the pressure drop and solids concentra-
tion distribution in slurry pipelines. Durand and Condolios (1952)
were some of the first to develop empirical models for computing
the hydraulic gradient, suggesting that the Froude number, specific
gravity, concentration of particles, and particle drag coefficient are
key parameters. Wasp et al. (1977) improved their calculation by
incorporating the effect of varying-size particles with the assump-
tion that a wide particle size distribution leads to better suspension.
Kaushal and Tomita (2002) modified the Wasp et al. (1977) model
by alleviating some of its restrictive assumptions, showing good
agreement with laboratory experiments. Wilson (1976) used a force
balance concept to develop a two-layer model where each layer has
a uniform concentration and phase-averaged velocity, which was
later improved by a three-layer model proposed by Doron et al.
(1987) by including a stationary bed at low flow rates. Among these,
the Saskatchewan Research Council (SRC) two-layer model of Gillies
et al. (1991) is most commonly used in the literature for predicting
the pressure drop in slurry pipelines. The SRC two-layer model pre-
dicts the pressure gradient and deposition velocity as a function of
the particle diameter, pipe diameter, particle concentration, and
the mixture velocity based on experimental correlations.

The extensive variety of modeling approaches that exist tends
to lead to significantly varying predictions of the critical parame-
ters. Furthermore, the vast majority of these models predict slurry
flows without deposition taking place, and are only valid well
above the critical deposition velocity. However, it is not always
practical to avoid the formation of a bed at the bottom of the pipe,
and very limited data is available in the literature for flows in this
regime, even though this regime is of great practical importance.
Several experiments have shown that the critical deposition veloc-
ity remains fairly constant for a wide range of solid loading. Kau-
shal and Tomita (2002) observed that the deposition velocity
increases only by a very little amount as solid concentration in-
creases. Schaan et al. (2000) saw a similar trend in the flow of var-
ious granular material through a 105 mm diameter pipe, reporting
that overall the deposition velocity is fairly constant over the range
of solid concentrations from 5% to 45% by volume. Further model-
ing challenges include the lack of data on particle segregation of
polydisperse slurries. Kumar et al. (2003) show that the pressure
drop and deposition velocity is greatly affected by the particle size
distribution, though most of the experimental studies used to de-
velop models for pressure drop considered monodisperse or nar-
row-size distributions. In addition, these models tend to provide
information on macroscale features only, while local dynamics
can affect pipeline operation significantly. Advancements in the
understanding and prediction of detailed processes that contribute
to pipeline wear, particle attrition, and agglomeration, is crucial.

With increasing computational resources and advancements in
numerical modeling, computational fluid dynamics (CFD) is
becoming a valuable tool for investigating slurry flows. CFD has
the capability to generate detailed information of three-dimen-
sional particle-laden flows under a wide range of operating condi-
tions. However, directly solving the flow around each particle
remains overly expensive for engineering systems of interest,
which has led to the development of a large number of modeling
approaches (see e.g. Capecelatro and Desjardins, 2012; Fox, 2012;
Balachandar and Eaton, 2010; Deen et al., 2007; Patankar and Jo-
seph, 2001; Van der Hoef et al., 2006). In recent years, liquid–solid
slurries have been mostly simulated using Eulerian-based models
for the solid phase and Reynolds Averaged Navier–Stokes (RANS)
approaches to model the turbulent nature of the carrier fluid. Ling
et al. (2003) proposed a simplified 3D algebraic slip mixture (ASM)

model for the numerical computation of sand-water slurry flows.
ASM was coupled with the renormalization group (RNG) K–e tur-
bulence model (Orszag et al., 1993) to obtain a solution in fully
developed turbulent flows. They concluded that the model was
capable of providing good predictions of the mean pressure gradi-
ent if the slurry mean velocity is higher than the critical deposition
velocity, otherwise a big discrepancy existed between the numer-
ical results and experimental data. Ekambara et al. (2009) obtained
CFD results of horizontal liquid–solid slurry pipelines using ANSYS-
CFX based on the kinetic theory of granular flow. They conducted
several simulations with a range of flow parameters and compared
local and time-averaged particle concentration profiles, particle
and liquid velocity profiles, and frictional pressure loss with exper-
imental data, showing overall good agreement. Concentration pro-
files compared best with fine-particulate slurries, but simulations
were unable to reproduce experimental data when near-wall lift
forces took effect. Kaushal et al. (2012) simulated pipeline slurry
flows of monodisperse fine particles using a Eulerian two-phase
model. Simulations were conducted for a range of concentrations
and mixture velocities and gave fairly accurate predictions for both
the pressure drop and concentration profiles. They presented
velocity and slip-velocity distributions that had otherwise not been
measured experimentally at such high particle concentrations.
Overall, Eulerian-based methods are capable of producing accurate
velocity and particle concentration profiles provided they have
been appropriately tuned, and they have the advantage of repre-
senting a large number of particles at relatively low computational
cost. However, detailed microscale and mesoscale information of
the flow is compromised, and an accurate description of the inter-
actions between the interstitial fluid and solid phase is limited. In
addition, higher order statistics of the critical flow parameters are
out of reach in the context of RANS. In order to gain further insight
on local processes and important mesoscale features of the flow,
more detailed simulation approaches are required.

In this work, individual particle trajectories are solved in a
Lagrangian fashion, while the fully-developed turbulent flow is
solved on a background Eulerian mesh in a large eddy simulation
(LES) framework. The two phases are fully coupled via volume frac-
tion and momentum exchange terms. A two-step filtering process
is employed during interphase exchange, allowing for Eulerian grid
spacing to particle diameter ratios close to unity, enabling the cap-
ture of important flow features at the particle scale. This simula-
tion strategy has proven to be very successful for simulating
dense gas–solid particulate flows (Capecelatro and Desjardins,
2012), and is employed for liquid–solid flows in this work. The
equations of motion for each phase are presented in Section 2, fol-
lowed by some details on the numerical implementation and sim-
ulation cases. In Section 3, simulations of three-dimensional
polydisperse slurries in a horizontal pipe are presented. Two cases
are considered, one operated above the critical deposition velocity,
leading to a heterogeneous suspension of particles, and another be-
low the critical deposition velocity, leading to a stationary bed. Re-
sults for the first case are compared with laboratory data from
Roco and Balakrishnam (1985). A detailed investigation of both
cases is then presented, providing mean and cross-correlation sta-
tistics of particle concentration, velocity, and slip velocity. Lagrang-
ian statistics, including particle segregation and individual forces
acting on each particle, are analyzed and discussed. Finally, in Sec-
tion 4 the simulation results are used to study closures from RANS
modeling of turbulent multiphase flows.

2. Governing equations and numerical implementation

This section summarizes the equations used to describe the mo-
tion of particle trajectories suspended in a wall-bounded liquid
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flow, and presents the numerical framework and simulation
parameters considered in this study.

2.1. Fluid equations

To solve the equations of motion for the liquid in the slurry
without requiring to resolve the flow around individual particles,
a volume filtering operator is applied to the Navier–Stokes equa-
tions, thereby replacing the point variables (fluid velocity, pres-
sure, etc.) by smoother, locally filtered fields. Following the work
of Anderson and Jackson (1967), which was then extended by
Capecelatro and Desjardins (2012), the volume-filtered continuity
equation is given by

@

@t
ðef qf Þ þr $ ðef qf uf Þ ¼ 0; ð1Þ

where ef, qf, and uf are the fluid-phase volume fraction, density, and
velocity, respectively. The momentum equation is given by

@

@t
ðef qf uf Þ þr $ ðef qf uf & uf Þ ¼ r $ ðs' RuÞ þ ef qf g ' F inter

þ Fmfr; ð2Þ

where g is the acceleration due to gravity, and Finter is the inter-
phase exchange term that arises from filtering the divergence of
the stress tensor, which will be described in detail in Section 2.2.
Fmfr is a body force akin to a mean pressure gradient introduced
to maintain a constant mass flow rate in the pipe, and will be
defined later in Section 2.3. The volume-filtered stress tensor, s, is
expressed as

s ¼ 'pI þ l ruf þruT
f '

2
3
ðr $ uf ÞI

! "
þ Rl; ð3Þ

where the hydrodynamic pressure and dynamic viscosity are given
by p and l, respectively. I is the identity tensor. Rl is an unclosed
term that arises as a result of filtering the velocity gradients in the
point wise stress tensor, and is modeled by introducing an effective
viscosity l⁄ to account for enhanced dissipation by the particles, gi-
ven by

Rl ( l) ruf þruT
f '

2
3
ðr $ uf ÞI

! "
; ð4Þ

where l⁄ was derived by Gibilaro et al. (2007) for fluidized beds,
and is given by

l) ¼ l e'2:8
f ' 1

# $
: ð5Þ

In Eq. (2), Ru is a sub-filter Reynolds stress term closed through a
turbulent viscosity model, given by

Ru ( lt ruf þruT
f '

2
3
ðr $ uf ÞI

! "
: ð6Þ

A dynamic Smagorinsky model (Germano et al., 1991; Lilly,
1992) based on Lagrangian averaging (Meneveau et al., 1996) is
employed to estimate the turbulent viscosity lt.

2.2. Lagrangian particle tracking

The displacement of an individual particle indicated by the sub-
script p is calculated using Newton’s second law of motion,

mp
dup

dt
¼ f inter

p þ Fcol
p þmpg; ð7Þ

where the particle mass is defined by mp ¼ pqpd3
p=6, where qp and

dp are the particle density and diameter, respectively. The force f inter
p

exerted on a single particle p by the surrounding fluid is related to
the interphase exchange term in Eq. (2) by

F inter ¼
Xnp

p¼1

nðjx' xpjÞf inter
p ; ð8Þ

where np is the total number of particles, n is the filtering kernel, xp

is the position of the pth particle, and f inter
p is approximated by

f inter
p ( Vpr $ sþ f drag

p ; ð9Þ

where Vp is the volume of the pth particle. The drag force is given as

f drag
p

mp
¼

1
sp
ðuf ' upÞFðef ;RepÞ; ð10Þ

where the particle response time sp derived from Stokes flow is

sp ¼
qpd2

p

18lef
: ð11Þ

The dimensionless drag force coefficient of Tenneti et al. (2011)
is employed in this work, which is valid for a wide range of Rey-
nolds numbers and solid packing, given by

Fðef ;RepÞ ¼
1þ 0:15Re0:687

p

e2
f

þ ef F1ðef Þ þ ef F2ðef ;RepÞ; ð12Þ

where the particle Reynolds number is

Rep ¼
ef qf juf ' upjdp

l : ð13Þ

The remaining two terms are given by

F1ðef Þ ¼
5:81ep

e3
f

þ
0:48e1=3

p

e4
f

;

F2ðef ;RepÞ ¼ e3
pRep 0:95þ

0:61e3
p

e2
f

 !
;

where ep = 1 ' ef is the particle-phase volume fraction. More details
are provided in Capecelatro and Desjardins (2012).

Other contributions to the interphase exchange include the
added mass term, Basset history term, lift, and Faxen forces. Zhang
and Prosperetti (1994) give an exact expression for the added mass
term for an inviscid fluid at low particle concentrations. At higher
values of concentration, they include a correction to account for
the local volume fraction. They also derive an expression for the lift
force for spherical particles in an inviscid fluid. A quite different
expression is given by Saffman (1965) for viscous flows at low Rey-
nolds numbers. Kaushal and Tomita (2007) studied the effect of
near-wall lift forces in slurries using a c-ray densitometer. They ob-
served a decrease in lift with increased flow rate, and concluded that
there is an absence of near-wall lift for finer particles while the near-
wall lift related to coarser particles is not associated with the Mag-
nus effect, the Saffman force, or other lift-like interaction forces.
Although lift effects may have non-negligible contributions to the
mean motion of the particles, a broad agreement on an appropriate
model for this expression does not exist. Models for the lift coeffi-
cient found in the literature are typically valid for a single isolated
particle, and become inaccurate for deposition near solid bound-
aries and high particle Reynolds numbers (Wang et al., 1997; Kurose
and Komori, 1999). As a consequence, such contributions are not
considered in this work. However, since we account for the volume
filtered fluid pressure gradient force and viscous stress at the loca-
tion of each particle explicitly, some of these effects are captured.

The angular momentum of the particle, xp, is attributed to par-
ticle collisions only, and is given by

Ip
dxp

dt
¼
X

j

dp

2
n* f col

t;j!p; ð14Þ
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where f col
t;j!p is the tangential component of the collision force of

particle j acting on particle p, and Ip is the moment of inertia of
the particle, given for a sphere by

Ip ¼
mpd2

p

10
: ð15Þ

Particle–particle and particle–wall collisions are modeled using
a soft-sphere approach originally proposed by Cundall and Strack
(1979). When two particles come into contact, a repulsive force
f col

n is created as

f col
n;b!a ¼

'kdabnab ' guab;n if dab < ðra þ rb þ kÞ;
0 else;

%
ð16Þ

where ra and rb are the radii of particles a and b, respectively, dab is
the distance between the centers of the particles, dab is the overlap
between the particles, and nab is the unit normal vector from parti-
cle a to particle b. A sketch of the collision process is given in Fig. 1.
The normal relative velocity between particles a and b is given by

uab;n ¼ ððua ' ubÞ $ nabÞnab: ð17Þ

The spring stiffness and damping parameter are given by k and g,
respectively. A model for the damping parameter uses a coefficient
of restitution 0 < e < 1 and an effective mass mab = (1/ma + 1/mb)'1

such that

g ¼ '2 ln e

ffiffiffiffiffiffiffiffiffiffiffi
mabk

p

p2 þ ðln eÞ2
: ð18Þ

The spring stiffness is related to the collision time, scol, according to

k ¼ mab=s2
colðp2 þ ðln eÞ2Þ: ð19Þ

To properly resolve the collisions without requiring an excessively
small timestep, scol = 15Dt is chosen for all simulations presented
in this work. k is the force range, a small number that allows for col-
lisions to initiate before particles are in contact, which decreases
monotonically with decreasing particle velocity (Capecelatro and
Desjardins, 2012). Collisions with walls are handled by treating
the walls as particles with infinite mass and zero radius. To account
for friction between particles and thus particle rotation, the static
friction model is employed for the tangential component of the col-
lision force, given by

f col
t;b!a ¼ 'lf jf

col
n;b!ajtab: ð20Þ

The relative tangential velocity, uab,t, is defined as

uab;t ¼ uab ' uab;n; ð21Þ

and is used to create a tangential unit vector tab as

tab ¼
uab;t

juab;t j
: ð22Þ

2.3. Momentum forcing

To simulate a fully-developed turbulent flow, periodic bound-
ary conditions are used in the streamwise direction. In order to
maintain a constant mass flow rate in this periodic environment,
momentum is forced using a uniform source term that is adjusted
dynamically in Eq. (2). This source term exactly reflects the mean
pressure gradient required to maintain the flow rate. At each time-
step, momentum is lost via drag on the particles and viscous fluxes
at the walls, which must be added back to the momentum equa-
tion. Volume integrating Eq. (2) and rearranging leads to

Fmfr ¼ ' 1
V f

Z

Vf

½r $ ðs' RuÞ þ ef qf g ' F inter,dV f ; ð23Þ

where V f is the volume occupied by the fluid. Note that the pressure
gradient term vanishes due to the periodic boundary condition. The
source term is applied to Eq. (2), and is added to the pressure gra-
dient in the filtered stress tensor in Eq. (9).

2.4. Numerical framework

To study the detailed mesoscale physics of slurries in horizontal
pipes, the mathematical description presented heretofore is imple-
mented in the framework of NGA (Desjardins et al., 2008), a
high-order, fully conservative CFD code tailored for turbulent flow
computations. The Navier–Stokes equations are solved on a
staggered grid with second order spatial accuracy for both the
convective and viscous terms, and the second order accurate
semi-implicit Crank-Nicolson scheme of Pierce (2001) is imple-
mented for time advancement. The details on the mass, momen-
tum, and energy conserving finite difference scheme are available
in Desjardins et al. (2008).

The particles are distributed among the processors based on the
underlying domain decomposition of the liquid phase. For each
particle, its position, velocity, and angular velocity are solved using
a second-order Runge–Kutta scheme. Sub-stepping is used to en-
sure stability when the particle response time (defined in Eq.
(11)) becomes smaller than the simulation timestep. Coupling be-
tween the liquid phase and solid particles appears in the form of
the volume fraction ef, and interphase exchange term Finter defined
by Eq. (8). These terms are first computed at the location of each
particle, using information from the fluid, and are then transferred
to the Eulerian mesh. To interpolate the fluid variables to the par-
ticle location, a second order trilinear interpolation scheme is used.
To extrapolate the particle data back to the Eulerian mesh in a
computationally efficient manner that is consistent with the math-
ematical formulation, a two-step mollification/diffusion operation
is employed. This strategy has been shown to be both conservative
and converge under mesh refinement (Capecelatro and Desjardins,
2012). A proper parallel implementation makes simulations con-
sisting of Oð108Þ Lagrangian particles possible, allowing for a de-
tailed numerical investigation of slurries with realistic physical
parameters and moderate concentrations.

The liquid-phase transport equations are discretized on a Carte-
sian mesh, and a conservative immersed boundary (IB) method is
employed to model the cylindrical pipe geometry without requir-
ing a body-fitted mesh. The method is based on a cut-cell formula-
tion that requires rescaling of the convective and viscous fluxes in
these cells, and provides discrete conservation of mass and
momentum (Meyer et al., 2010; Pepiot and Desjardins, 2010).Fig. 1. Soft-sphere representation of two particles undergoing collision.
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Details on coupling the IB method with the Lagrangian particle sol-
ver can be found in Capecelatro and Desjardins (2012).

2.5. Configuration and simulation parameters

The simulations conducted in this work are modeled after the
experiments presented by Roco and Balakrishnam (1985). A
5.15 cm diameter pipe with a mean particle volume fraction of
8.4% is considered, illustrated in Fig. 2a. The slurry consists of sand
with a mean diameter of 165 lm ranging from 50 to 307 lm, sus-
pended in water. The particle size distribution in the simulation
resembles that of the experiment, shown in the cumulative distri-
bution function (CDF) in Fig. 2b. Periodic boundary conditions are
enforced in the x-direction. The pipe length was chosen to be as
long as possible while remaining computationally tractable. With
this consideration, an aspect ratio of 5 was chosen, corresponding
to over 16 million particles and 18.7 million grid cells. A cell size
approximately equal to the maximum particle diameter was cho-
sen in order to best capture the range of spatial scales associated
with the turbulent flow. The complete set of simulation parameters
is given in Table 1.

Two cases are considered by keeping all parameters constant
and varying only the liquid bulk velocity Uf. Case A has a bulk
velocity of 1.6 m/s, resulting in a heterogeneous suspension of par-
ticles with a liquid Reynolds number Re = qfUfD/l = 85,000. A slur-
ry with a stationary bed is considered in case B, where the
Reynolds number is decreased to 46,660, corresponding to
Uf = 0.83 m/s, well below the critical deposition velocity of 1.2 m/
s predicted by the model of Wasp et al. (1977).

3. Results

3.1. Flow characterization

In both simulations, the flow organizes into distinct regions
controlled by the dynamics of the flow. To help guide the analysis
and discussion of the computational results, these distinct layers
are depicted by the thin gray lines in the subsequent figures. Three
flow regions are easily identified in case B, denoted throughout as
region I, II, and III. Region I corresponds to the rigid bed located at
the bottom of the pipe, up to y/D = '0.405. The particles in the bed
are densely packed and undergo sustained contact, and as a result
do not contribute to the mean motion of the flow. Located just
above the bed, region II extends up to ep approximately equal to
0.25, which corresponds to y/D = '0.328, and consists of highly
collisional particles and high liquid turbulence intensity. In this re-
gion, particles can be lifted from the bed by strong turbulent eddies
or ejected by other particles colliding with the bed. Finally, region
III is located far from the bed such that the mean particle concen-
tration is considerably smaller and the particles remain suspended
due to liquid velocity fluctuations.

The distinction between the flow regions in case A is less obvi-
ous. In this case, there is no formation of a bed at the bottom of the
pipe, and instead the flow is divided into regions II and III only. The
transition between these regions was chosen to correspond to a
concentration similar to the transition between regions II and III
in case B. To avoid overly confusing figures, the transition between
regions II and III corresponds to the location of the interface sepa-
rating regions I and II in case B at y/D = '0.405.
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Fig. 2. Simulation geometry and particle size distribution.
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3.2. Comparison with experiments

Experimental results of the local, time-averaged particle con-
centration, particle velocity distribution, and frictional pressure
drop are available for case A only. For each case, simulations were
run long enough to reach a statistically stationary state. Results
were collected after approximately s = 50, where s = tUf/D is the
non-dimensional time. The mean quantities of interest, denoted
by the brackets, were obtained by averaging in the x-direction, in
time over approximately 70 non-dimensional time units, and by
symmetry about the z = 0 plane. Most results are presented as a
function of vertical distance for z = 0, denoted throughout as the
central vertical axis or vertical centerline, or as a function of z for
y = 0, denoted as the horizontal centerline. Simulation and experi-
mental results of the particle concentration and velocity profiles
along the vertical axis of the pipe are presented in Fig. 3. The dis-
tributions are asymmetric, with larger concentrations and lower
velocities observed in the bottom half of the central vertical axis
due to particle settling. While excellent agreement with the exper-
iment is obtained, a slight over-prediction of particle concentration
is observed in region II at the bottom of the pipe. This discrepancy
may be attributed to the near-wall modeling challenges discussed
in Capecelatro and Desjardins (2012), or a result of neglecting lift
forces in Eq. (9).

Figs. 4 and 5 show contours of particle concentration and veloc-
ity in the cross-section of the pipe, respectively. Again, excellent
agreement is observed with the experiment. From Fig. 4, it seen
that the concentration in the lower third of the central vertical axis
is approximately 10 times the concentration at the top third. In
Fig. 5, a steeper gradient in particle velocity is observed at the
top of the pipe compared to the bottom.

Finally, the reported experimental pressure drop for this case is
'666.3 Pa/m. The pressure drop determined using Eq. (23) was
found to be '510 Pa/m. This discrepancy is attributed to errors
in the calculation of the viscous flux at the IB surface and inaccu-
racies in the near-wall modeling in the context of LES.

3.3. Operating below the critical deposition velocity

Slurry pipelines operated below the critical deposition velocity
can severely degrade performance and lead to blockage and equip-
ment failure. At low flow rates, the liquid shear stress cannot over-
come the submerged weight of the particles, allowing particles to
settle and form a stationary bed. Case B was simulated with a bulk
velocity of 0.83 m/s, well below the critical deposition velocity of
1.2 m/s predicted by the model of Wasp et al. (1977) for the

parameters given in Table 1. Fig. 6a and b show the mean particle
concentration and velocity profiles for that case along the central
vertical axis of the pipe. Note that due to polydispersity, the ran-
dom-close-packing limit for hard spheres, ep, max = 0.634, is ex-
ceeded. The liquid velocity profiles for both cases are not shown
due to the similarities with the particle phase, and instead the rel-
ative velocity between the two phases will be provided in Section
3.5. The solid concentration profile in Fig. 6a shows that the parti-
cles are almost entirely located in the bottom half of the pipe. The
solid concentration is nearly constant in region I and decreases
rapidly in region II. As seen in Fig. 6b, the particle velocity is very
small in region I, and increases rapidly in region II. Above the
bed, the solid velocity profile in case B resembles the profile of case
A in Fig. 3b.

The degree of particle accumulation can be quantified by the
probability density function (PDF) of particle number density
(Pozorski and Apte, 2009), which is equivalent to the PDF of parti-
cle concentration. For a random distribution of particles, in the ab-
sence of any processes leading to segregation (e.g., particle settling
due to gravitation effects or turbophoresis as a result of turbulence
in the carrier phase), a discrete Poisson distribution is expected,
defined as

fpðncÞ ¼
e'hnc i

nc!
hncinc ; ð24Þ

where nc is the number of particles per computational cell and hnci
is the average number of particles per computational cell. The Pois-
son distribution is computed by considering particles with a diam-
eter of 165 lm, i.e. the mean diameter of the distribution used in
the simulations. The PDF of particle concentration for each case
along with the discrete Poisson distribution is given in Fig. 7. As
can be expected from the large variation in particle concentration
observed in Fig. 3a and Fig. 6a, both cases show a higher frequency
of regions containing more particles, as well as regions devoid of
particles, in comparison to the Poisson distribution. These traits
are more pronounced for case B than for case A, and in fact for that
case the distribution is bi-modal, reflecting the large number of par-
ticles around the close-packing limit that constitute the bed.

The joint-PDFs of Rep and ep for both cases are displayed in
Fig. 8. The joint-PDF was computed using the Reynolds number
of each particle and the volume fraction interpolated to the posi-
tion of the respective particle. Several differences can be observed
between each case. Due to the presence of the bed, case B shows a
very high frequency of low Rep particles near the close packing lim-
it, while a somewhat wider range of Rep values is reached for

Table 1
Simulation parameters for each case. St ¼ spu2

sqf =l, where the frictional liquid velocity us is computed using Prandtl’s friction law for smooth pipes (Pope, 2000).

Pipe diameter, D 5.15 cm
Pipe length 25.75 cm
Cells in x-direction, nx 768 –
Cells in y-direction, ny 156 –
Cells in z-direction, nz 156 –
Number of particles, np 16,027,332 –
Mean particle concentration 0.084 –
Mean particle diameter 165 lm
Minimum particle diameter 50 lm
Maximum particle diameter 307 lm
Particle standard deviation 70 lm
Particle density, qp 2650 kg/m3

Particle–particle coefficient of restitution 0.9 –
Particle–wall coefficient of restitution 0.8 –
Coefficient of friction 0.1 –

Case A B

Bulk liquid velocity, Uf 1.6 m/s 0.83 m/s
Stokes number, St 23.8 – 7.4 –
Timestep, Dt 4 * 10'6 s 2 * 10'5 s
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Fig. 3. Mean statistics along the central vertical axis of the pipe for case A. Experimental data (Roco and Balakrishnam, 1985) (circles), simulation results (thick solid line),
boundary separating regions II and III (thin solid line).

Fig. 4. Particle concentration distribution in the pipe cross-section for case A.

Fig. 5. Particle velocity distribution in the pipe cross-section for case A.
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particles in low ep regions. In comparison, case A displays much
larger values of Rep that correspond to a wide range of ep.

3.4. Higher order statistics

Higher order statistics are extracted from both simulations in
order to gain further insight on the multiphase dynamics. The par-
ticle concentration variance is displayed in Fig. 9. For case B, the
greatest concentration fluctuations are located at the interface be-
tween region II and region III. In region III, the fluctuations decay
rapidly to very small values due to the dilute nature of the flow
in that layer. The bed region, region I, exhibits no variance in con-
centration, indicative of particles remaining in rigid contact. In
comparison, concentration fluctuations in case A are non-negligi-
ble at the bottom of the pipe, confirming that a stationary bed
has not formed. Similarly to case B, the volume fraction variance
for case A peaks near the bottom of region III, albeit at a lower va-
lue than case B. These fluctuations in case A remain noticeable
throughout the majority of the pipe.

The components of the Reynolds stress tensor for both phases
are displayed in Fig. 10. It can be noted that the particles have
nearly the same fluctuation intensity as the liquid phase. For both
cases, the greatest velocity fluctuations are located near the inter-
face between region II and III, and at the top of the pipe. At the pipe
center, turbulence production is minimum since the mean velocity
gradient and shear stress are smallest, leading to small velocity

fluctuations. In both simulations, u0pv 0p
D E

and u0f v 0f
D E

are negative
in the bottom half of the central vertical axis and positive in the
upper half, while the other components of the Reynolds stress ten-
sor are positive throughout. The signs of the Reynolds stresses cor-
respond to classical single phase wall-bounded turbulent flows
(Pope, 2000). Fig. 10c and d reveal distinct trends of the velocity
covariance profiles within the three regions of case B. In region I,
the velocity covariance is negligibly small. In region II, the covari-
ance magnitudes increase due to the nature of the highly collisional
shear flow. In region III, the mean shear in the fluid decreases, lead-
ing to a decrease in the velocity covariance until contributions in
shear from the upper wall in the pipe become significant. The
behavior of the velocity covariance profiles along the vertical axis
of case A resembles the trends seen in case B above the rigid bed.

Profiles of the covariance between concentration and velocity of
each phase along the vertical axis of the pipe are displayed in
Fig. 11. Again, note the similarities between particle and liquid sta-
tistics. From Fig. 11c and d, distinct trends are observed in the
three regions in case B. The fluctuation magnitudes are smallest
in the bed, increase within region II, and decrease in region III.
Due to the small concentration of particles in the upper half of

the central vertical axis, e0pu0p
D E

and e0pu0f
D E

are negligible in this re-

gion compared to the fluctuations in the lower half, though e0pw0p
D E

and e0pw0f
D E

are uncorrelated throughout the entire vertical axis

due to the symmetry of the flow. The positive correlation of parti-
cle concentration and vertical velocity in region II and the lower
half of region III reveals the tendency for local regions of high con-
centration to move upward, suggesting that groups of particles are
drawn up from the bed surface into the more dilute regions. Since
they originate from the surface of the stationary bed, these groups
tend to move slower than the surrounding mixture in the stream-

wise direction, leading to a negative e0pu0p
D E

. To be compatible with

a positive e0pv 0p
D E

, it is expected that particles fall back down to the

bed surface in more dilute arrangements. This behavior may be
attributed to the presence of Kelvin–Helmholtz-type instabilities
in region II, due to the high shear in mixture velocity and steep gra-
dient in concentration. Fig. 12 confirms that longitudinal waves are
visible in the instantaneous particle concentration field.

3.5. Slip velocity

The slip velocity, us = uf ' up, is a critical parameter for under-
standing the behavior of slurry flows. For example, drag and lift
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Fig. 6. Mean statistics along the central vertical axis of the pipe for case B. Transition between regions I and II (gray solid line), transition between regions II and III (gray
dotted line).
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Fig. 7. PDF of particle concentration. Case A (thick solid line), case B (dashed line),
Poisson distribution (thin solid line).
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forces strongly depend on us, and knowledge of the relative veloc-
ities between phases can provide insight on deposition. Vertical
and horizontal profiles of the mean and variance of the streamwise
slip velocities along the pipe center are given in Fig. 13. Except for
regions near the wall, the mean slip velocity magnitudes for both
cases are relatively small, with maximum values approximately
0.05% of their respective bulk velocities. As seen in Fig. 13c, the
mean slip velocity distribution is symmetric along the horizontal
centerline, with negative values near the pipe wall. Particles lo-
cated near the walls maintain their inertia while viscous effects re-
duce the liquid momentum, which explains these negative slip
velocities. Symmetry is also observed in the slip velocity variance
given in Fig. 13d, with maximum fluctuations near the pipe wall.
However, it is evident from Fig. 13a and b that the slip velocity is
asymmetric along the vertical centerline. It can be seen that except
for the near-wall regions, the particle velocity lags behind the li-
quid velocity in both cases along the vertical axis. In case B, the slip
velocity at the bottom of the pipe is negligible due to the presence
of the bed. However, with the absence of a bed in case A, shear in-
duced by the carrier phase leads to non-negligible particle contact
forces in the streamwise direction, including normal collisions via
Eq. (16) and Coloumb friction from Eq. (20), reducing the particle
motion resulting in a zone of strong positive slip. Profiles of the

forces exerted on the particles contributing to this behavior will
be given in Section 3.6. This peak in slip velocity corresponds to
the location of maximum solid concentration displayed in Fig. 3a.
At the very bottom of the pipe, a negative slip velocity is recovered
due to the fact that liquid does not slip while particles do. Fluctu-
ations of the slip velocity along the vertical axis of the pipe are
shown in Fig. 13b. In case A, hu0s

2i is fairly constant in the bottom
portion of the pipe, and decreases at the pipe center. In case B,
hu02s i is very small within the bed, increases in region II, and
decreases in region III until near-wall effects at the top of the pipe
become significant. From Fig. 10, the smallest slip velocity fluctua-
tions correspond to the smallest velocity fluctuations.

3.6. Force balance

To gain further insight on the phenomenological behavior of
both cases, the individual forces exerted on the particles are ana-
lyzed. In Fig. 14a and c, components of the streamwise particle
acceleration are given along the vertical centerline. This includes
the fluid drag given by Eq. (10), the volume-filtered pressure gradi-
ent, the volume-filtered viscous stress, and the collision force given
by Eqs. (16) and (20). In case B, the competing interactions be-
tween these various forces can be distinguished between the three
regions of the flow. In region I, drag is balanced by inter-particle
collisions, leading to negligible streamwise acceleration. In region
III, collisions are negligible and the fluid drag and pressure gradient
forces dominate. A complex transition between both regions is ob-
served in region II, with effects from inter-particle collisions, tur-
bulence, and high shear velocities. These trends are not as clear
in case A, which might be due in part to the transition from region
II to III interacting with near-wall dynamics. In region II, the drag
and collision forces dominate in the streamwise direction. In re-
gion III, the drag force dominates, although the pressure gradient
and collision force remain significant.

The components of the vertical particle acceleration are dis-
played in Fig. 14b and d. At the bottom of the pipe, the drag force,
pressure gradient, and collisions are balanced by gravity. In case B,
the vertical drag force is negligible within the bed, and inter-parti-
cle collisions and the force due to the pressure gradient are approx-
imately constant. In region II, the drag force increases rapidly and
the collision force decreases until drag dominates in region III.
Interestingly, the vertical force balance in regions I and II corre-
spond the onset of fluidization observed in dense particle beds
(Gidaspow, 1994). This behavior confirms that the vertical dynam-
ics in region I correspond to a rigid bed, region III is drag

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

1e−06

0.0001

0.01

1

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0001

0.01

1

100

Fig. 8. Joint-PDF of particle Reynolds number and concentration.
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Fig. 9. Particle concentration variance profile along the central vertical axis of the
pipe. Case A (thick solid line), case B (dashed line). The thin gray line separates
regions II and III in case A and regions I and II in case B. The gray dotted line
separates region II and III in case B.
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dominated and the dynamics approach that of a dilute flow, and re-
gion II is a complex transition where all forces contribute to the
mean motion of the particles. In case A, the vertical collision force
is positive in region II and negative in the lower half of region III.
The fluid pressure gradient and gravity have the greatest contribu-
tions to the motion of the particles in this region. In region III, the
fluid pressure gradient decreases and drag rapidly dominates, as
was observed for case B. In both cases, the force due to the filtered
viscous stress has minimum effect on the motion of each particle.

3.7. Particle segregation

The particle size distribution can significantly impact the
dynamics of liquid–solid slurries. For example, increasing the par-
ticle size will lead to an increase in the Coulomb friction force,
resulting in an increase in pressure gradient and slip velocity. Lar-
ger particles will also lead to a larger gravitational force, which will
enhance the settling rate and steepen the concentration gradient in
the vertical direction. Kumar et al., 2003 measured the pressure
drop and concentration distribution of particles for two materials
mixed in different proportions to analyze this effect. It was found
that in general, a slurry with a mixture of fine and coarse particles
requires less energy for transportation. Interestingly, it was deter-
mined that the energy required to transport an optimally distrib-
uted mixture of particles is less than that required for a fine
slurry. However, due to the strong coupling with the carrier phase

turbulence and fluctuations in particle concentration, predictive
modeling of particle segregation is particularly challenging.

Instantaneous snapshots of the particle position in a cross-sec-
tional slice of the pipe are given in Fig. 15. A vertical gradient in
particle diameter is observed in case A, with smaller particles at
the top of the pipe and the largest at the bottom. In contrast, a layer
of large particles is observed above the dense bed in case B. The
mean particle diameter conditioned on the vertical height in the
pipe is given in Fig. 16a, providing further detail on the particle
segregation. Note that particle size averages are based on number
density and not volume. The particle size is seen to decrease mono-
tonically in the vertical direction in case A, except at the very bot-
tom. Interestingly, in case B the slope reverses in region II where
the particle size is shown to increase with height. It is postulated
that particles are entrained by strong vortical structures directly
above the surface of the bed, and the finest particles are ejected
while the coarsest particles are too heavy and remain suspended
in this region, unable to penetrate the dense bed in region I. To
investigate the mechanisms responsible for this behavior, the dis-
tribution of vertical forces acting on each particle was computed
for a range of particle sizes. The acceleration due to drag and the
fluid pressure gradient is given in Fig. 17. Note that converging
the results for the largest particles at the top of the pipe is chal-
lenging due to the small sample size, and are therefore not pro-
vided in all figures. As seen in Fig. 17b and d, the motion of each
particle due to the fluid pressure gradient is not significantly af-
fected by its diameter. However, from Fig. 17a and c, the vertical
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Fig. 10. Velocity covariance profiles normalized by the bulk fluid velocity along the central vertical axis of the pipe. hu0u0i (thick solid line), hv0v0i (dashed line), hw0w0i (dotted
line), hu0v0i (thin solid line). The thin gray line separates regions II and III in case A and regions I and II in case B. The gray dotted line separates region II and III in case B.
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component of the acceleration due to drag is shown to be greatly
affected by the particle size. In case B, the smallest particles expe-
rience the greatest vertical acceleration at the boundary between
regions II and III. This behavior suggests that smaller particles
are more likely to be ejected vertically than larger particles in this
region.

Fluctuations in particle diameter are given in Fig. 16b. The
greatest fluctuations are seen to correspond to the largest particles.

In both simulations, the maximum fluctuation in particle size is lo-
cated at the boundary between regions II and III, and the slope re-
verses below this boundary. In region I of case B, the particle
diameter fluctuations are fairly constant. The PDF of particle diam-
eter in each region of case B is given in Fig. 18. The PDFs of particle
size in regions I and II resemble the PDF along the entire vertical
centerline of the pipe, due to the majority of the particles being
located in these two regions. Particles located in region III have a
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Fig. 11. Particle concentration-velocity covariance profiles normalized by the bulk fluid velocity along the central vertical axis of the pipe. he0pu0i (thick solid line), he0pv 0i
(dashed line), he0pw0i (dotted line). The thin gray line separates regions II and III in case A and regions I and II in case B. The gray dotted line separates region II and III in case B.

Fig. 12. Instantaneous snapshot of particle concentration in the z = 0 plane of case B. Iso-contour of ep = 0.35 given by the white line.
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narrower PDF, with much fewer large particles and more small
particles. Clearly, the width of the PDF is seen to correspond to
the magnitude of particle size fluctuations, where the lower re-
gions of the pipe contain a greater variety of particle sizes and thus
larger fluctuations compared to the upper region.

4. Investigating turbulence closures

In the literature, Reynolds-averaged modeling of the kinetic the-
ory of granular flows (Jenkins and Savage, 1983) is commonly used
for the computation of turbulent slurries (e.g., Ling et al., 2003;
Ekambara et al., 2009; Kaushal et al., 2012; Azimi et al., 2012). A re-
cent study by Fox (2013) derived a consistent framework for inves-
tigating RANS of particle-laden turbulence. In the study, it is
pointed out that closure models for the fluid phase equations can
be taken from turbulence models used for variable-density turbu-
lence, and closure models developed for compressible turbulence
can be used to close the particle-phase terms. However, the cou-
pling terms that involve Reynolds-averaging with respect to both
the particle and the fluid properties require further investigation.
The simulation results in Section 3.4 can provide useful insight on
the relative importance of some of these closures and the validity
of existing models.

The covariance of concentration and fluid velocity, referred to as
the drift velocity, appears in the Reynolds-averaged fluid-phase

transport equations. This term is usually treated as a turbulent flux
(Zuber, 1965), and simplifies to

e0pu0f
D E

¼ ' lt

qf Sct
rhepi; ð25Þ

where Sct is a turbulent Schmidt number that varies with the Stokes
number. In a statistically homogeneous flow where the concentra-
tion gradient vanishes, this model becomes insufficient, and the fol-
lowing model was proposed for homogeneous directions by Fox
(2013):

e0pu0f
D E

¼ Cghepihef iðhupi' huf iÞ; ð26Þ

where Cg is a model constant that depends on the particle Reynolds
number. Eqs. (25) and (26) are plotted against simulation results in
Figs. 19 and 20, respectively, where lt was computed from the tur-
bulent-viscosity hypothesis (Pope, 2000)

huf v f i ¼ '
1
qf

lt
@huf i
@y

: ð27Þ

The vertical component of the drift velocity is shown in Fig. 19. In
both cases, Sct = 1.3 was determined from the simulations, showing
very good agreement between the model and the simulation data.
In Fig. 20, the model given in Eq. (26) is plotted against the simula-
tion results for the streamwise component of the drift velocity. Due
to periodicity, the first term on the right-hand side of Eq. (26)
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vanishes, and he0pv 0f i is shown to be a function of the mean concen-
tration and the difference between the mean velocity of each phase.
It was found that an optimal model constant is Cg = 2.4 for case A,
and Cg = 1.5 for case B. With these constants, the model proposed
by Fox (2013) is shown to give excellent agreement with the results
in this work.

The covariance of volume fraction and fluid pressure gradient
appears in the Reynolds-averaged transport equation for the parti-
cle velocity (Fox, 2013), and contributes to the mean acceleration
of particles due to the fluid. This term represents the fluctuations
that contribute to the mean buoyancy force and is often assumed
to be negligible. Fig. 21 shows the covariance of volume fraction
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Fig. 14. Contributing forces to particle acceleration normalized by gravity. Drag as given by Eq. (10) (circles), volume-filtered pressure gradient (triangles), volume-filtered
viscous stress (crosses), collisions given by Eqs. (16) and (20) (squares). The thin gray line separates regions II and III in case A and regions I and II in case B. The gray dotted
line separates region II and III in case B.

Fig. 15. Instantaneous snapshot of particle position in an x-plane colored by diameter.
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and fluid pressure gradient normalized by gravity along the verti-
cal axis of the pipe. It is evident that this term contributes little to
the particle motion in comparison to the gravitational force, and
the assumption to neglect this term in the context of RANS model-
ing of slurries appears appropriate.

5. Conclusions

A high-fidelity, large eddy simulation framework was coupled
with a dense Lagrangian particle tracking solver to investigate hor-
izontal slurry pipe flows operated above and below the critical
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Fig. 16. Particle segregation along pipe centerline for case A (solid line) and case B (dashed line). The thin gray line separates regions II and III in case A and regions I and II in
case B. The gray dotted line separates region II and III in case B.
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deposition velocity. The background fluid mesh size was approxi-
mately equal to the maximum particle diameter in order to best
capture the range of relevant length scales associated with the
flow.

Mean particle concentration and velocity profiles were com-
puted, showing excellent agreement with laboratory data. Statis-
tics were extracted for both cases, providing correlations
between particle concentration and the velocities of each phase
that had otherwise not been investigated in the context of slurries.
Three distinct regions were identified in the flow operated below
the critical deposition velocity, corresponding to a rigid bed, a
highly-collisional shear flow, and a freely-suspended particle flow.
The maximum fluctuations in concentration, liquid and particle
velocities, and particle diameter were located in the region just
above the surface of the bed. In this region, a positive correlation
between particle concentration and the vertical velocity of each
phase was observed, indicating the tendency for particles to be
drawn up from the bed with a greater local concentration than
when they fall back to the bed. The statistics presented for the case
operated above the critical deposition velocity resemble the lower
Reynolds number case shifted by the height of the bed.

Profiles of the particle diameter along the vertical centerline of
the pipe reveal a strong segregation in particle size, with the small-
est particles located at the top of the pipe and the largest towards
the bottom. Interestingly, the slurry operated below the critical
deposition velocity showed the largest particles to be located just
above the surface of the bed. Profiles of the fluid drag and pressure
gradient exerted on each particle indicate that the smallest parti-
cles in this region experience greater vertical accelerations, leading
to a suspension of the largest particles. Throughout the pipe
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Fig. 19. Vertical component of the drift velocity normalized by the bulk fluid velocity. Simulation results (solid line), model given by Eq. (25) (dashed-line), using Sct = 1.3.
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Fig. 20. Streamwise component of the drift velocity normalized by the bulk fluid velocity. Simulation results (solid line), model given by Eq. (26) (dashed-line).
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cross-section, it was observed that the largest contribution to the
motion of each particle comes from the drag force, which is op-
posed by collisions in the streamwise direction and gravity in the
vertical direction.

The level of detail provided by the simulations presents a un-
ique opportunity to investigate some of the closures that appear
in a recent derivation by Fox (2013) of the exact Reynolds-aver-
aged kinetic theory equations for multiphase flows. The gradient-
diffusion model for the vertical drift velocity compared very well
with simulation results when setting the turbulent Schmidt num-
ber to Sct = 1.3. The Reynolds number-dependent modeling con-
stant used in a recently proposed model for homogeneous
gravity-driven flows (Fox, 2013) was determined for each case,
showing excellent agreement with the streamwise drift velocity
predicted by the simulations. It was also found that the covariance
of fluid pressure gradient and vertical fluid velocity can be ne-
glected in both cases and therefore might often be negligible when
modeling turbulent slurries.
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